If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+20x+1=0
a = 18; b = 20; c = +1;
Δ = b2-4ac
Δ = 202-4·18·1
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{82}}{2*18}=\frac{-20-2\sqrt{82}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{82}}{2*18}=\frac{-20+2\sqrt{82}}{36} $
| a/3+4=6a3+4=6. | | (4x+7)+(10x-23)+(7x-35)=180 | | -3(3a-4)=-15 | | 1-2t=-t-6 | | x5348-1350=3998 | | -2=-2n+2/3n | | -8h=-14h-12 | | 8x-14-5x=4 | | 6x+-2=2(3x+-1) | | -8h=–14h−12 | | -7-5(-4c+4)=-7c+5 | | 4032+x^2+256x=0 | | 6(x-6)+6=8x+-8 | | 12u+2u-18=-10 | | 4x-35=37 | | 280/3500=x/100 | | A+6a-90=30 | | 6q^2=100 | | -3r-10=-4r-5 | | n/6+2n=n-8 | | -11k=-10k-11 | | |6w-15|=3w-21 | | 8(3+-2)=4(7t-1) | | -2=p-5/3+1 | | 20=4(t+1) | | (3x)+(x+16)=24 | | 14-(3-2x)=7x+5 | | 3m=-377 | | -17-8n=-7n | | 4-2(2+4x=x-3 | | 3a+2a–3=5a–3 | | X+2=11+7x+3x |